Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Frontiers in psychiatry ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1958021

ABSTRACT

Aim The present study aimed to investigate the construct structure behind the psychosocial response, behavioral response, prenatal depression, and post-traumatic stress disorder (PTSD) in pregnant women during the COVID-19 pandemic in China. Method The validated Chinese version of the Edinburgh Postnatal Depression Scale (EPDS), PTSD CheckList (PCL)-6, and two newly established scales for COVID-19-related psychological and behavioral responses were used. Structural equation modeling (SEM) analysis was applied to evaluate the structural relationships of psychological and behavioral responses during the COVID-19 pandemic. Results Of the 1,908 mothers who completed the questionnaires, 1,099 met the criteria for perinatal depression, and 287 were positively screened for PTSD, where 264 women exceed the cut-off points for both. Pregnant women with full-time or part-time jobs tended to have the lowest scores of EPDS (10.07 ± 5.11, P < 0.001) and stress levels (23.85 ± 7.96, P = 0.004), yet they were more likely to change their behavior in accordance with the COVID-19 outbreak (13.35 ± 3.42, P = 0.025). The structural model fit the data (χ2 = 43.260, p < 0.001) and resulted in satisfactory fit indices (CFI = 0.984, TLI = 0.959, RMSEA = 0.072, and χ2/df = 10.815), all path loadings were significant (p < 0.05). The SEM indicates that the level of QoL was attributable to the occurrence of PND, leading to PTSD, and COVID-19 related behavioral and psychological responses. Conclusion The inter-relationships between the COVID-19-related psychosocial and behavioral responses have been assessed, indicating that the pandemic increased the burden of perinatal depression. Psychoeducation, as well as other psychological interventions, may be needed to alleviate the COVID-19-based anxiety and increase their engagement in protective behaviors.

2.
Antioxid Redox Signal ; 35(13): 1081-1092, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1306508

ABSTRACT

Aims: Influenza A virus hemagglutinin (HA) binding to sialic acid on lung epithelial cells triggers membrane fusion and infection. Host thiol isomerases have been shown to play a role in influenza A virus infection, and we hypothesized that this role involved manipulation of disulfide bonds in HA. Results: Analysis of HA crystal structures revealed that three of the six HA disulfides occur in high-energy conformations and four of the six bonds can exist in unformed states, suggesting that the disulfide landscape of HA is generally strained and the bonds may be labile. We measured the redox state of influenza A virus HA disulfide bonds and their susceptibility to cleavage by vascular thiol isomerases. Using differential cysteine alkylation and mass spectrometry, we show that all six HA disulfide bonds exist in unformed states in ∼1 in 10 recombinant and viral surface HA molecules. Four of the six H1 and H3 HA bonds are cleaved by the vascular thiol isomerases, thioredoxin and protein disulphide isomerase, in recombinant proteins, which correlated with surface exposure of the disulfides in crystal structures. In contrast, viral surface HA disulfide bonds are impervious to five different vascular thiol isomerases. Innovation: It has been assumed that the disulfide bonds in mature HA protein are intact and inert. We show that all six HA disulfide bonds can exist in unformed states. Conclusion: These findings indicate that influenza A virus HA disulfides are naturally labile but not substrates for thiol isomerases when expressed on the viral surface.


Subject(s)
Disulfides/metabolism , Hemagglutinins/metabolism , Influenza A virus/chemistry , Disulfides/chemistry , Hemagglutinins/chemistry , Influenza A virus/metabolism , Models, Molecular
3.
Cell ; 184(15): 3949-3961.e11, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1252550

ABSTRACT

Monoclonal antibodies against SARS-CoV-2 are a clinically validated therapeutic option against COVID-19. Because rapidly emerging virus mutants are becoming the next major concern in the fight against the global pandemic, it is imperative that these therapeutic treatments provide coverage against circulating variants and do not contribute to development of treatment-induced emergent resistance. To this end, we investigated the sequence diversity of the spike protein and monitored emergence of virus variants in SARS-COV-2 isolates found in COVID-19 patients treated with the two-antibody combination REGEN-COV, as well as in preclinical in vitro studies using single, dual, or triple antibody combinations, and in hamster in vivo studies using REGEN-COV or single monoclonal antibody treatments. Our study demonstrates that the combination of non-competing antibodies in REGEN-COV provides protection against all current SARS-CoV-2 variants of concern/interest and also protects against emergence of new variants and their potential seeding into the population in a clinical setting.


Subject(s)
Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/prevention & control , Mutation/genetics , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Animals , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Cryoelectron Microscopy , Hospitalization , Humans , Lung/pathology , Lung/virology , Male , Neutralization Tests , Vero Cells , Viral Load
4.
J Med Internet Res ; 22(9): e21685, 2020 09 17.
Article in English | MEDLINE | ID: covidwho-796020

ABSTRACT

A novel pneumonia-like coronavirus disease (COVID-19) caused by a novel coronavirus named SARS-CoV-2 has swept across China and the world. Public health measures that were effective in previous infection outbreaks (eg, wearing a face mask, quarantining) were implemented in this outbreak. Available multidimensional social network data that take advantage of the recent rapid development of information and communication technologies allow for an exploration of disease spread and control via a modernized epidemiological approach. By using spatiotemporal data and real-time information, we can provide more accurate estimates of disease spread patterns related to human activities and enable more efficient responses to the outbreak. Two real cases during the COVID-19 outbreak demonstrated the application of emerging technologies and digital data in monitoring human movements related to disease spread. Although the ethical issues related to using digital epidemiology are still under debate, the cases reported in this article may enable the identification of more effective public health measures, as well as future applications of such digitally directed epidemiological approaches in controlling infectious disease outbreaks, which offer an alternative and modern outlook on addressing the long-standing challenges in population health.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Disease Outbreaks/statistics & numerical data , Epidemiologic Methods , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , COVID-19 , China/epidemiology , Humans , Masks , Pandemics , Quarantine/statistics & numerical data , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL